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Trend to Equilibrium of a Degenerate Relativistic Gas

C. Cercignani1 and G. M. Kremer2
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We examine the problem of the trend to equilibrium for a relativistic gas which
may follow Fermi�Dirac, Bose�Einsten, classical Boltzmann statistics. We use
the relativistic version of the quasiclassical Boltzmann equation for fermions
and bosons, the Uehling�Uhlenbeck equation.
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1. INTRODUCTION

The study of the trend to equilibrium in kinetic theory is a subject full of
pitfalls. The discussion by Truesdell and Muncaster(1) on the standard
Boltzmann equation, though somehow exaggerated and ungenerous to
some authors who have tried to present the topic in a simplified form, gives
an idea of the difficulties of the proof.

In order to avoid the pitfalls, we must state the assumptions very
clearly and beware of sweeping statements. But this is not enough: even if
we do not look for a pedantically rigorous proof, we must be sure that our
solution has certain properties, which can only be provided by an accurate
existence theory.

The rigorous theory of the Boltzmann equation started in 1933 with a
paper by Torsten Carleman, who proved a theorem of global existence and
uniqueness for a gas of hard spheres in the so-called space homogeneous
case. The theorem was proved under the restrictive assumption that the
initial data depend upon the molecular velocity only through its
magnitude.(2) This restriction is removed in a posthumous book by the
same author.(3)
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The existence theory was extended by D. Morgenstern, (4) who proved
a global existence theorem for a gas of Maxwellian molecules in the space
homogeneous case, under the assumption that the solution is in L1 and has
finite energy and entropy. His work was further extended by L. Arkeryd in
1972.(5, 6)

The proof of Carleman concerns bounded data (with a weight that
ensures a proper decay for large speeds) and proves that the solution
remains similarly bounded at later time. His work was later extended by
Arkeryd(7) to more general molecular models.

The results of Carleman, Morgenstern and Arkeryd referred to the
case in which the solution of the Boltzmann equation does not depend on
the space coordinates (the space homogeneous case). Since we shall con-
sider just this case, we shall not mention the remarkable results obtained
by many authors in more complicated situations, (8) where the trend to
equilibrium may even not hold.

Our aim is to examine the problem when the following generalizations
are introduced: a) the gas is relativistic; b) the gas may be degenerate, i.e.,
follow Fermi�Dirac or Bose�Einstein, rather than Boltzmann statistics. We
shall use the relativistic Uehling�Uhlenbeck equation, i.e., the relativistic
version of the quasi-classical Boltzmann equation for fermions and
bosons.(9, 10)

In the non-relativistic case the Boltzmann equation for a degenerate
gas seems to have been studied in a mathematically rigorous way in the
case of fermions, (11, 12) but not in the case of bosons. In fact, the Fermi case
is easier, in a sense, than the classical Boltzmann case; in fact physics
provides, thanks to the exclusion principle, an upper bound to the distribu-
tion function. Dolbeault(11) also discusses the trend to equilibrium for a
Fermi gas. On the contrary, the well-known phenomenon of Bose conden-
sation indicates that physics, in this case, tends to drive the distribution
function toward higher values where these values are already high, thus
jeopardizing the argument which ensures the boundedness of the distribu-
tion function. A preliminary study has been presented by Lu.(13)

We remark that, in the case of Boltzmann statistics the trend to
equilibrium in the space inhomogeneous case has been studied by
Andre� asson(14) and by Glassey and Strauss.(15)

In this paper we shall discuss the trend to equilibrium in a precise
way, under the assumption of boundedness and equicontinuity of the dis-
tribution function. This property has been shown for the usual Boltzmann
equation in the case of distinguishable particles and fermions, as indicated
above. The proofs can be extended (under suitable assumptions on the
cross section) to the relativistic case. Actually this extension has never been
rigorously studied in detail, but seems to follow from the regularizing
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properties of the kernel proved by Andre� asson.(14) In the case of Bose
particles, the property is simply assumed here, the proof being left for
future work.

2. THE UEHLING�UHLENBECK EQUATION

We consider a relativistic degenerate ideal gas described by the one-
particle distribution function f (x:, p:) which is a function of the space-time
cooordinates (x:)=(ct, x) and momentum four-vector ( p:)=( p0, p) in a
Minkowski space characterized by the metric tensor ':; with signature
(1, &1, &1, &1). Due to the constraint of constant lenght of the momen-
tum four-vector p:p:=m2c2 or p0=- |p|2+m2c2 we have that f (x:, p:)=
f (x, p, t). The element of volume d 3x d 3p in the phase space is a scalar
invariant and f (x, p, t) d 3x d 3p gives at time t the number of particles in the
volume element d 3x about x and with momenta in the range d 3p about p.

The Uehling�Uhlenbeck equation(9, 10) is a quasi-classical Boltzmann
equation that incorporates modifications in the collision term of the
Boltzmann equation since the particles obey quantum statistics. For ideal
gases in the absence of external forces the relativistic Uehling�Uhlenbeck
equation reads:

p: �f
�x:=

1
2 | _ f $
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In the above equation _ is an invariant differential cross-section, d0 an
element of solid angle, p and p

*
represent the pre-collisional momenta.

Further p$ and p$
*

denote pre-collisional momenta which will be transformed
into p and p

*
by a collision. F is the invariant flux
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and f $
*

is an abbreviation for f (x, p$
*

, t) and so on. Further gs d 3x d 3p�h3

gives the number of states in the phase space with gs denoting the
degeneracy factor of particles with spin s and rest mass m:

gs={2s+1
2s

for m{0
for m=0

(3)
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where h is the Planck constant and = refers to the statistics:

+1 for Bose�Einstein statistics

=={&1 for Fermi�Dirac statistics, and (4)

0 for Maxwell�Boltzmann statistics

For the relativistic Uehling�Uhlenbeck equation (1) one can obtain a
general equation of transfer through the multiplication of (1) by an
arbitrary function �(x ;, p ;) and by integrating the resulting equation over
all values of d 3p�p0 . After some manipulations we get

�
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�x: f

d 3p
p0

=
1
8 | (�+�

*
&�$&�$

*
) _ f $

*
f $ \1+=

fh3

gs +\1+=
f
*

h3

gs +
& f

*
f \1+=

f $h3

gs +\1+=
f $
*

h3

gs +& F_ d0
d 3p

*
p

*0

d 3p
p0

(5)

The right-hand side of the above equation follows by the use of the well-
known symmetry properties of the collision term.

The macroscopic fields of particle four-flow N : and energy-momentum
tensor T :; are defined in terms of the one-particle distribution function
through

N :=c | p: f
d 3p
p0

, T :;=c | p:p ;f
d 3p
p0

(6)

The balance equations for these fields are obtained from the general equa-
tion of transfer (5) by choosing �=c and �=cp ;, respectively

�: N :=0, �;T :;=0 (7)

By choosing in the general equation of transfer (5)

�=&kc _ln \ fh3

gs +&\1+
gs

=fh3+ ln \1+
=fh3

gs +& (8)

where k is the Boltzmann constant it follows a balance equation that reads

�:S:=� (9)
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where the quantities S : and � are defined by

S:=| p: f _&kc ln \ fh3
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Since the distribution functions are non-negative we can use the rela-
tion-ships

{(1&x) ln x<0
(1&x) ln x=0

for all x>0
for x=1

(12)

to infer that, the right-hand side of (9) is non-negative. Hence (9)
represents the balance equation of the entropy four-flow S: and we identify
� as the entropy production which is non-negative. The balance equation
for the entropy four-flow is then written as:

�: S:=��0 (13)

It is interesting to write the entropy four-flow for a gas that obeys the
Maxwell�Boltzmann statistics. In this case by taking the limit when = � 0
in (10), yields

S:=&kc | p: f ln \ fh3

egs +
d 3p
p0

(14)

3. EQUILIBRIUM

By inspecting the general equation of transfer one concludes that the
right-hand side of (5) vanishes if

�+�
*

=�$+�$
*

(15)
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A function that satisfies (15) is called a summational invariant. One can
prove (see, for example, ref. 16) that a summational invariant is a linear
combination of the momentum four-vector, e.g.,

�=A+B:p: (16)

where A is a scalar and B: a four-vector that do not depend on p:. One
can easily verify that (16) is a sufficient condition for (15), since the conser-
vation of the momentum four-vectors p:+ p:

*
= p$:+ p

*
$: must hold.

From the above result we are ready to derive the expression for the
equilibrium distribution function. Indeed, in equilibrium the entropy source
must vanish and hence the integrand in the right-hand side of (1) must
vanish, the number of particles entering the volume element d 3x d 3p in the
phase space being equal to the number of particles that leave it. Hence we
have that

f
*
$(0) f $(0) \1+=

f (0)h3

gs +\1+=
f
*
(0) h3

gs +
= f

*
(0) f (0) \1+=

f $ (0)h3

gs +\1+=
f
*
$ (0) h3

gs + (17)

where the index (0) denotes the equilibrium value of the one-particle dis-
tribution function. By taking the logarithm of the above expression it
follows that

ln \ f (0)

1+=( f (0)h3�gs)++ln \ f
*
(0)

1+=( f
*
(0)h3�gs)+

=ln \ f $ (0)
E

1+=( f $(0)h3�gs)++ln \ f
*
$ (0)

1+=( f
*
$ (0)h3�gs)+ (18)

Hence ln[ f (0)�(1+=f (0)h3�gs)] is a summational invariant and according
to (15) it must be a linear combination of the momentum four-vector p::

ln \ f (0)

1+=( f (0)h3�gs)+=&(A+B:p:), or f (0)=
gs �h3

e&a+B :p:&=
(19)

where a=&A&ln(gs �h3).
We shall now determine the two unknows a and B: of the equilibrium

distribution function (19)2 . We start by introducing a frame, to be called

446 Cercignani and Kremer



the Lorentz rest frame and denoted by an index R, in which the gas is seen
as an isotropic body for an observer that moves with the gas velocity v.
In this frame the four-velocity of the gas

(U :)=\ c

- 1&v2�c2
,

v

- 1&v2�c2+ , such that U :U:=c2 (20)

reduces to

(U :
R)=(c, 0, 0, 0)=(c, 0) (21)

In the Lorentz rest frame we introduce the quantities:

n��particle number density

p��isotropic pressure{e��internal energy per particle (22)

T��temperature

s��entropy per particle

The particle number density is related to the number of baryons minus the
number of antibaryons per unit three-dimensional proper volume.

In terms of the four-velocity of the gas U : the equilibrium values of
the particle four-flow, energy-momentum tensor, and entropy four-flow in
an arbitrary Lorentz frame read

N :
E=nU :, T :;

E =&p':;+(en+ p)
U :U ;

c2 , S :
E=nsEU : (23)

where the index E denotes the equilibrium value of the quantity.
We assume also that in the Lorentz rest frame B: has only the time

component. Thus we write

(B:
R)=\ `

mc
, 0+ (24)

where ` is a parameter which we shall identify latter. Since B: is a four-
vector we have that

B:
R BR:=B:B:=

`2

(mc)2 , and
�`

�B:
=

(mc)2

`
B: (25)
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By inserting the equilibrium distribution function (19)2 into the defini-
tion of the particle four-flow (6)1 it follows that

N :
E=c | p: gs �h3

e&a+B :p:&=
d 3p
p0

(26)

Let I be the following integral

I=|
gs �h3

e&a+B :p:&=
d 3p
p0

(27)

If we differentiate N :
E with respect to a and I with respect to B: we get

that

�N :
E

�a
=&c

�I

�B:
(28)

On the other hand, in a Lorentz rest frame we can write

n=4?(mc)3 gs

h3 J21 , I=4?(mc)2 gs

h3 J20 (29)

where Jnm denotes the integral

Jnm(`, a)=|
�

0

sinhn x coshm x
e` cosh x&a&=

dx (30)

By differentiating n with respect to a and I with respect to ` and by using
the following relationships

�Jnm

�a
=

n&1
`

Jn&2, m+1+
m
`

Jn, m&1

(31)
�Jnm

�`
=&

n&1
`

Jn&2, m+2&
m+1

`
Jn, m

it follows that

�n
�a

=&
1

mc
�I

�`
(32)
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Now we get by combining equations (23), (25)2 , (28) and (32) that B:

is given by

B:=
`

mc2 U : (33)

Hence we have identified B:, and we proceed to identifying ` and a. If
we insert the equilibrium distribution function (19)2 into the definition of
the energy-momentum tensor (6)2 , and consider a Lorentz rest frame, we
get

ne=4?m4c5 gs

h3 J22 , p=
4?
3

m4c5 gs

h3 (J22&J20)=
4?
3

m4c5 gs

h3 J40 (34)

by using of the relationships

ne=T :;
E U:U; , &3p+ne=T :;

E ':; (35)

Since it is not possible to obtain from (34) explicit expressions for a
and `, we calculate the the equilibrium value of the entropy per particle sE

which follows from (23)3

sE=
1

nc2 S :
EU: (36)

Hence we obtain from (10), (19)2 and (36):

sE=k \ `
mc2 e&a+

4?`
3

m3c3

n
gs

h3 J40+ (37)

Now the differential of the above equation leads to

dsE=
k`

mc2 \de&
p
n2 dn+ (38)

by using the relationships (31) and (34). We compare (38) with the Gibbs
equation

dsE=
1
T \de&

p
n2 dn+ (39)

and identify, `=mc2�kT as the ratio between the rest energy mc2 of a
particle and kT, which gives the order of magnitude of the thermal energy
of the gas.
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Further (37) can be written as

a=
1

kT \e&TsE+
p
n+=

+E

kT
(40)

that is a is identified as the ratio between the chemical potential in equi-
librium +E=e&TsE+ p�n and the thermal energy of the gas kT.

Hence we have identified a, ` and B: and the equilibrium distribution
function (19)2 can be written as:

v relativistic Maxwell�Boltzmann statistics:

f (0)=
gs

h3 e(+E �kT )&(U:p:�kT ) (41)

v relativistic Fermi�Dirac (+) and Bose�Einstein (&) statistics:

f (0)=
gs �h3

e&(+E�kT )+(U:p: �kT )\1
(42)

The expression (41) was obtained by Ju� ttner(17) in 1911 and the
expression (42) was also obtained by him(18) in 1928.

We remark that the relation between the temperature and the thermal
energy is not linear and thus one cannot speak of a ``temperature'' for a
nonequilibrium gas, as one frequently does in the nonrelativistic case.

4. TREND TO EQUILIBRIUM

Before we proceed the analysis of the trend to equilibrium of a
relativistic gas we shall introduce some inequalities that will be used in this
section. Let y be a positive real variable; then the following inequality
holds:

( y&1)&ln y�0, or with y=
1
x

, x ln x+1&x�0 (43)

Further one can always find a constant C such that the following inequality
holds

x ln x+1&x&CG( |x&1|) |x&1|�0 (44)

where

G( |x&1|)={ |x&1|,
1

if 0�|x&1|�1
if |x&1|�1

(45)
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We return to the balance equation for the entropy four-flow (13) and
write it as

�:H:=S�0, with H:=&S:�k, S=&��k (46)

By considering that the one-particle distribution function does not depend
on the space coordinates and introducing the scalar invariant

H=
1
c2 U :

RH:=
1
c

H0

=| p0f _ln \ fh3

gs +&\1+
gs

=fh3+ ln \1+
=fh3

gs +&
d 3p
p0

(47)

we get that the inequality (46) reduces to

dH

dt
=S�0 (48)

From the above equation one infers that H decreases. Further the time
derivative of H vanishes when the one-particle distribution function is the
equilibrium distribution function, which will be denoted by HE#H( f (0)).

Now we choose in the inequalities (43)

y=
1+=fh3�gs

1+=f (0)h3�gs

, and x=
fh3�gs

1+=fh3�gs

1+=f (0)h3�gs

f (0)h3�gs

(49)

and get by adding the two resulting inequalities:

f _ln
fh3�gs

1+=fh3�gs

&ln
f (0)h3�gs

1+=f (0)h3�gs&&
gs

=h3 ln \ 1+=fh3�gs

1+=f (0)h3�gs+�0 (50)

We multiply (50) by p0 and integrate the resulting equation over all values
of d 3p�p0 and get

H&HE�| p0( f& f (0)) ln
f (0)h3�gs

1+=f (0)h3�gs

d 3p
p0

=&
U :

R

c | p:( f&f (0))[A+B ;p;]
d 3p
p0

(51)

by the use of (19)1 . The right-hand side of the above inequality vanishes
if we impose that

U: N :=U:N :
E , U:U;T :;=U:U;T :;

E (52)
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The conditions (52) imply that

H�HE (53)

We base on Carleman(2, 3) and Cercignani(19) to prove the following
theorem.

Theorem 1. If H(t) is a continuous and differentiable function of
t that satisfies (48) and (53) and f is uniformly bounded and equicon-
tinuous in p: , and � p1+'

0 f d 3p ('>0) is uniformly bounded, then H tends
to HE when t � �.

Proof. From (53) and (48) we infer that H is bounded from below
by HE , its derivative being negative and vanishing when the one-particle
distribution function is the equilibrium one. Hence it is possible to find a
sequence of instants of time t1 , t2 ,..., tn ,... such that

lim
n � �

dH

dt
(tn)=0 (54)

Further, because of Ascoli�Arzela� 's theorem, there exists a uniformly con-
verging sequence f (tn)# fn such that on any compact set D

lim
n � �

fn= f� (55)

If we prove that

f $
*� f $� \1+=

f�h3

gs +\1+=
f
*� h3

gs +
= f

*� f� \1+=
f $�h3

gs +\1+=
f $
*�h3

gs + (56)

then according to (17) f� is an equilibrium distribution function and, as
we shall prove, H tends to HE when t � �.

In order to prove (56) we suppose that there exists a domain of
positive measure D such that

} f $
*� f $� \1+=

f�h3

gs +\1+=
f
*� h3

gs +
& f

*� f� \1+=
f $�h3

gs +\1+=
f $
*�h3

gs + }�R>0 (57)
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where R is a constant. The uniform convergence of fn to f� implies that it
is possible to find a n0 such that

} f $
*n f $n \1+=

fnh3

gs +\1+=
f
*nh3

gs +
& f

*n fn \1+=
f $nh3

gs +\1+=
f $
*nh3

gs + }>R
2

>0 (58)

for n>n0 in D. Hence it follows that

} f $
*n f $n \1+=

fnh3

gs +\1+=
f
*nh3

gs +& f
*n fn \1+=

f $nh3

gs +\1+=
f $
*nh3

gs + }
_} ln f $

*n f $n(1+=( fnh3�gs))(1+=( f
*nh3�gs))

f
*n fn(1+=( f $nh3�gs))(1+=( f $

*nh3�gs)) }
>

R
2

ln \1+
R

2M2(1+=Mh3�gs)
2+ (59)

by considering that the one-particle distribution function f is bounded by
a constant M.

If we multiply (59) by (c�8) F_ d0(d 3p
*

�p V 0)(d 3p�p0) and integrate
the resulting equation over all values of d 3p

*
�p

*0 and d 3p�p0 we get

&
dH

dt
(tn)>

Rc
16

ln \1+
R

2M2(1+=Mh3�gs)
2+ |

D

F_ d0
d 3p

*
p
*0

d 3p
p0

(60)

by the use of (11), (46)�(48). If we take the limit of the above expression
when n � �, yields

0<&
Rc
16

ln \1+
R

2M2(1+=Mh3�gs)
2+ |

D

F_ d0
d 3p

*
p
*0

d 3p
p0

(61)

which contradicts the premise that D has a non-zero measure. Hence f� is
a Maxwellian; in order to prove the theorem we need to show that f� is
the Maxwellian fE determined by the initial data and the conservation
laws; this is easy because we can pass to the limit under the integral sign
in the expression of the conserved moments thanks to the assumption that
� p1+'

0 f d 3p ('>0) is uniformly bounded. Then H tends to HE and f tends
to fE when t � � along an arbitrary sequence. This is based on the well-
known fact that under the constraints provided by the conservation laws,
H is a convex functional with HE as its minimum (attained for f = fE).
The theorem is proved.
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We have proved that f tends to fE in the middle of the previous proof.
It is, however, interesting to prove (see the comments after the proof ):

Theorem 2. If H tends to HE when t � �, then f tends strongly to
f (0) in L1.

Proof. We begin by writing instead of (50) the inequality

f _ln
fh3�gs

1+=fh3�gs

&ln
f (0)h3�gs

1+=f (0)h3�gs&&
gs

=h3 ln \ 1+=fh3�gs

1+=f (0)h3�gs+
&CG \ | f (0)& f |

f (0)(1+=fh3�gs)+
| f (0)& f |

1+=f (0)h3�gs

�0 (62)

which is a consequence of (44). Following the same procedure as above in
order to derive (51) we get

H&HE�C _|Lt

p0 | f (0)& f |
1+=f (0)h3�gs

d 3p
p0

+|
St

p0 | f (0)& f | 2

f (0)(1+=fh3�gs)(1+=f (0)h3�gs)
d 3p
p0 & (63)

In the above inequality Lt and St denote the integration domains where
| f (0)& f | is larger or smaller than f (0), respectively. Since we have assumed
that H tends to HE when t � � and the integrands are positive, both
integrals on the right-hand abide of (63) must tend to zero in this limit.
Further by using the Schwarz's inequality one can show that:

|
St

p0 | f (0)& f |
1+=f (0)h3�gs

d 3p
p0

�_|St

p0 f (0)(1+=fh3�gs)
(1+=f (0)h3�gs)

d 3p
p0 &

1�2

__|St

p0 | f (0)& f | 2

f (0)(1+=fh3�gs)(1+=f (0)h3�gs)
d 3p
p0 &

1�2

� 0 (64)

when t � �. Hence the following integral over all domain of integration
tends to zero when t � �,

| p0 | f (0)& f |
1+=f (0)h3�gs

=|
Lt

p0 | f (0)& f |
1+=f (0)h3�gs

d 3p
p0

+|
St

p0 | f (0)& f |
1+=f (0)h3�gs

d 3p
p0

� 0 (65)
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From the above equation we conclude that f tends strongly to f (0) in L1,
proving the above theorem.

This proof of this theorem is less technical than the previous one and
hence more appealing to a physicist than that of Theorem 1. There is the
strong assumption, however, that H tends to HE . A simple proof of this
result is needed; to this aim, one of the authors conjectured (in the classical
case) an inequality on the entropy source(20) which would lead to an
exponential decay of the entropy to its equilibrium value. This inequality
has been disproved by several counterexamples if only mass, energy and
entropy are assumed to exist at t=0;(21, 24) an example where the entropy
dissipation rate is arbitrarily low was recently supplied by Bobylev and
Cercignani.(25) A modified form of the inequality, which still serves the pur-
pose, has been proved by Toscani and Villani.(26) Entropic convergence to
equilibria for general initial data was, however, first discussed by Carlen
and Carvalho(22) and inequalities showing that entropy converges in broad
generality were established later by the same authors.(23)

5. CONCLUDING REMARKS

Under the impetus of astrophysical research, the relativistic kinetic
theory has been the object of a renewed interest in the last few years. One
of the simplest problems in kinetic theory is the trend to equilibrium. Here
we examined this problem for a relativistic gas, which may follow Fermi�
Dirac or Bose�Einsten, or the classical Boltzmann statistics, using the
relativistic version of the Uehling�Uhlenbeck equation.
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